Flight Trajectory Planning for Fixed-Wing Aircraft in Loss of Thrust Emergencies

نویسندگان

  • Saswata Paul
  • Frederick Hole
  • Alexandra Zytek
  • Carlos A. Varela
چکیده

Loss of thrust emergencies—e.g., induced by bird/drone strikes or fuel exhaustion—create the need for dynamic data-driven flight trajectory planning to advise pilots or control UAVs. While total loss of thrust (gliding) trajectories to nearby airports can be pre-computed for all initial points in a 3D flight plan, dynamic aspects such as partial power, wind, and airplane surface damage must be considered for accuracy. In this paper, we propose a new Dynamic Data-Driven Avionics Software (DDDAS) approach which during flight updates a damaged aircraft performance model, used in turn to generate plausible flight trajectories to a safe landing site. Our damaged aircraft model is parameterized on a baseline glide ratio for a clean aircraft configuration assuming best gliding airspeed on straight flight. The model predicts purely geometric criteria for flight trajectory generation, namely, glide ratio and turn radius for different bank angles and drag configurations. Given actual aircraft flight performance data, we dynamically infer the baseline glide ratio to update the damaged aircraft model. Our new flight trajectory generation algorithm thus can significantly improve upon prior Dubins based trajectory generation work by considering these data-driven geometric criteria. We further introduce a trajectory utility function to rank trajectories for safety, in particular, to prevent steep turns close to the ground and to remain as close to the airport or landing zone as possible. As a use case, we consider the Hudson River ditching of US Airways 1549 in January 2009 using a flight simulator to evaluate our trajectories and to get sensor data (airspeed, GPS location, barometric altitude). In this example, a baseline glide ratio of 17.25:1 enabled us to generate trajectories up to 28 seconds after the birds strike, whereas, a 19:1 baseline glide ratio enabled us to generate trajectories up to 36 seconds after the birds strike. DDDAS can significantly improve the accuracy of generated flight trajectories thereby enabling better decision support systems for pilots in total and partial loss of thrust emergency conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title of Document : EMERGENCY FLIGHT PLANNING FOR THE GENERALIZED TRANSPORT MODEL AIRCRAFT WITH LEFT WING DAMAGE

Title of Document: EMERGENCY FLIGHT PLANNING FOR THE GENERALIZED TRANSPORT MODEL AIRCRAFT WITH LEFT WING DAMAGE Yunshen Tang, Master of Science, 2006 Directed By: Assistant Professor, Ella M. Atkins, Department of Aerospace Engineering A nontrivial fraction of aviation accidents are caused by in-flight damage or failures that reduce performance. Researchers are working to ensure future avionics...

متن کامل

In-Trim Flight Investigations of a Conceptual Fluidic Thrust-Vectored Unmanned Tail-Sitter Aircraft

The feasibility of using a stand alone Fluidic Thrust-Vectoring (FTV) system for the purpose of longitudinal trim of an unmanned aerial vehicle is the focus of the research presented in this paper. Since the fluidic thrust vectoring requires high pressure secondary air to deflect the engine exhaust gases, this research also provides an analytical toolset for preliminary sizing of a suitable sec...

متن کامل

Modeling Propeller Aerodynamics and Slipstream Effects on Small UAVs in Realtime

This paper focuses on strong propeller effects in a full six degree-of-freedom (6DOF) aerodynamic modeling of small UAVs at high angles of attack and high sideslip in maneuvers performed using large control surfaces at large deflections for aircraft with high thrust-to-weight ratios. For such configurations, the flight dynamics can be dominated by relatively large propeller forces and strong pr...

متن کامل

Agile Flight Control Techniques for a Fixed-Wing Aircraft

As unmanned aerial vehicles (UAVs) become more involved in challenging mission objectives, the need for agility controlled flight becomes more of a necessity. The ability to navigate through constrained environments as well as quickly maneuver to each mission target is essential. Currently, individual vehicles are developed with a particular mission objective, whether it be persistent surveilla...

متن کامل

Low-observable Nonlinear Trajectory Generation for Unmanned Air Vehicles

This paper explores low observability flight path planning of unmanned air vehicles (UAV’s) in the presence of radar detection systems. The probability of detection model of an aircraft near an enemy radar depends on aircraft attitude, range, and configuration. A detection model is coupled with a simplified aircraft dynamics model. The Nonlinear Trajectory Generation (NTG) software package deve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.00716  شماره 

صفحات  -

تاریخ انتشار 2017